[Contribution from the College of Chemistry and Physics, The Pennsylvania State University]

The Application of Activity Coefficient Data to the Relations between Kinetics and Acidity Functions ${ }^{1}$

By N. C. Deno and Carl Perizzolo
Received September 26, 1956

Equations are developed relating kinetic rate constants to acidity functions in aqueous solutions of strong acids. To usc these equations it is necessary to know the general behavior of activity coefficients of cations and neutral molecules in these media. For this purpose activity coefficients of three salts and fourteen neutral molecules have been measured as a function of sulfuric acid concentration. The method of applying these values is outlined.

The Hammett H_{0} function, ${ }^{2}$ defined by eq. 1 , has been successful in describing shifts in equilibria of the type $\mathrm{B}+\mathrm{H}^{+}=\mathrm{BH}^{+}$which are brought about by variation of the ratio of a strong acid to a polar liquid such as water or acetic acid. This success is dependent on H_{0} being a function only of acid concentration and not of other variables such as the structure of the base B.

$$
H_{0}=\left(p K_{\mathrm{BH}^{+}}\right)+\log \left(c_{\mathrm{B}} / c_{\mathrm{BH}^{+}}\right)=-\left(\log a_{\mathrm{H}^{+}}\right)-
$$

$$
\begin{equation*}
\log \left(f_{B} / f_{B I^{+}}\right) \tag{1}
\end{equation*}
$$

A similar situation prevails in the case of the C_{0} function, ${ }^{3}$ which is defined by eq. 2.

$$
\begin{gather*}
C_{0}=\left(p K_{\mathrm{R}^{+}}\right)+\log \left(c_{\mathrm{ROH}} / c_{\mathrm{R}^{+}}\right)=-\left(\log a_{\mathrm{H}^{+}}\right)+ \\
\log a_{\mathrm{H} 2 \mathrm{O}}-\log \left(f_{\mathrm{ROH}} / f_{\mathrm{R}^{+}}\right) \tag{2}
\end{gather*}
$$

For reactions in which the transition state is composed of the reactants $\mathrm{H}^{+}, \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$. eq. 3 is the Brönsted form of the rate equation. The terms in the brackets will be constants at a particular concentration of sulfuric acid and will correspond to the experimental rate constant, $k_{\exp }$. The logarithm of the expression for $k_{\text {exp }}$ can be combined with eq. 1 to give eq. 4 after differentiation with respect to $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. The symbol B represents the indicators used to evaluate the H_{0} acidity function. ${ }^{2}$

$$
\begin{gather*}
\mathrm{d} c_{\mathrm{A}} / \mathrm{d} t=c_{\mathrm{A}_{1}} c_{\mathrm{A}_{2}} \ldots\left[k\left(f_{\mathrm{A}_{1}} f_{\mathrm{A}_{2}} \ldots / f^{*}\right) a_{\mathrm{II}^{+}}\right] \tag{3}\\
\mathrm{d} \log k_{\mathrm{exp}} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}=-\mathrm{d} H_{0} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}+ \tag{4}\\
\mathrm{d} \log \left(f_{\mathrm{Al}_{1}} f_{\mathrm{A}_{2}} \ldots f_{\mathrm{BH}^{+}} / f_{\mathrm{B}} f^{*}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}
\end{gather*}
$$

In a similar way, eq. 5 can be derived for reactions of the type of eq. 6. The symbol ROH represents the alcohols used to evaluate the C_{0} acidity function. ${ }^{3}$

$$
\begin{align*}
& \mathrm{d} \log k_{\mathrm{exp}} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}=-\mathrm{d} C_{0} / \mathrm{d} \% \%_{\%} \mathrm{H}_{2} \mathrm{SO}_{4}+ \tag{5}\\
& \mathrm{d} \log (f_{\mathrm{A} 1} f_{\mathrm{A} 2} \ldots f_{\mathrm{SOH}} f_{\left.\mathrm{R}^{+} / / f_{\mathrm{ROH}} f^{*}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}}^{\mathrm{SOH}+\mathrm{H}^{+}=\mathrm{H}_{2} \mathrm{O}+}+\underbrace{\mathrm{S}^{+}}_{\text {rate-determining }} \\
& \quad \begin{array}{l}
\quad+\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots
\end{array} \text { products }
\end{align*}
$$

Values of $-\mathrm{d} H_{0} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $-\mathrm{d} C_{0} / \mathrm{d} \%$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ are known for several water-strong acid media so that the principal barrier to applying eq. 4 and 5 is in the estimation of the last term in each equation. The development of methods of estimating these terms will be the concern of this paper.
(1) Grateftul acknowledgment is made of the support of this research by a grant from the Petroleum Research Find of the American Chemical Society.
(2) L. P. Hammett, 'Physical Organic Chemistry,'" McGraw-Hill Book Co., Inc., New York, N. Y., 1940. Chapter IX.
(3) N. Deno. J. Jaruzelski and A, Schriesheim, This Journai. 77, 3044 (1955).

Experimental

The activity coefficients of most of the compounds were deternined by measuring the solubility of the compound in different concentrations of sulfuric acid at $25 \pm 0.1^{\circ}$. The pure substance was chosen as the standard state unless otherwise noted so that the activity coefficients were simply the reciprocal of the concentration of the saturated solutions. Since the solubilities were of the order of 10^{-2} molar or less, the value of the activity coefficient is probably a function only of the sulfuric acid concentration and in particular is not a function of the concentration of solute. The log of the activity coefficients were plotted against $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ and the slopes visually estimated to obtain values of d $\log \mathrm{f} / \mathrm{d} \%$ $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The substances studied were both solids and liquids. An excess of solute was shaken vigorously with the appropriate concentration of sulfuric acid in a water-bath thermostated at $25 \pm 0.1^{\circ}$. The concentration of the solution was periodically measured until a constant value was reached. This required several minutes for the liquids and several hours for the solids. The saturated solutions were removed from excess solute by carefully removing an aliquot with a pipet. Centrifugation was necessary with some of the liquids and the tetraphenylphosphonium and tetrabutylammonium ${ }^{4}$ perchlorate solutions required filtration.
The concentrations of potassium perchlorate and tetrabutylarnmonium perchlorate were determined by analyzing for perchlorate ion using the excellent procedure of Willard and Perkins. ${ }^{5}$ This involved treating a known volume of the saturated solution with a sodium chloride solution and then with a dilute aqueous solution of tetraphenylphosphonium chloride. The precipitated tetraphenylphosphonium perchlorate was filtered, washed, dried at 110° and weighed. The method was found to be unaffected by variations in the sulfuric acid concentration from 0 to 10%.

The concentrations of tetraphenylphosphonium perchloate in the different sulfuric acid solutions were determined spectroscopically using measurements at 268 and $276 \mathrm{~m} \mu$. Above 80% sulfuric acid the salt was unstable so that the data at 80% acid are of doubtful accuracy. Measurements were made on the tetraphenylphosphonium perchlorate solutions to show that there was no significant variation in the extinction coefficients between 0 and 60% sulfuric acid.

The concentrations of the remaining compounds werc determined spectroscopically. No correction was made for variation of extinction coefficient with sulfuric acid concentration. In two cases, chlorobenzene and methoxybenzene, this variation was studied and found to be less than 5% over the range of acid concentrations studied for each of these two compounds.
The activity coefficients for acrylonitrile were determined from distribution experiments between an alkane fraction that was primarily pentane and the appropriate sulfuric acid solution. The pentane was purified by shaking with sulfuric acid until the absorption at $225 \mathrm{~m} \mu$ was negligible. The concentration of acrylonitrile in the pentane was determined spectroscopically using data at $225 \mathrm{~m} \mu$. The concentration of acrylonitrile in the sulfuric acid solution was computed by difference. The solution of acrylonitrile in pentane was assumed to exhibit ideal belavior for the dilutc ranges studied and the standard state was chosen so that activity equaled the molar concentration of acrylonitrile in pentane. The activity coefficients were thus the concentra-

[^0]TABle I
Solubilities and Activity Coemficients of Salts as a Function of $\% \mathrm{H}_{2} \mathrm{SO}_{4}$

$\% \mathrm{HaSO}_{4}$	Solubility II $^{(\mathrm{c}}{ }^{\text {(moles/1.) }}$			Log f $\pm a^{\prime} b^{6}$			$\mathrm{d} \log j \pm / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4} b$		
0.0	0.1470	3.42	0. 01023	0.832	3.467	1.990	-0.016	-0.018	-0.018
5.06	. 1675	4.06	. 01189	. 760	3.390	1.925	-. .001	-. . 006	-. .006
12.40	. 1605	4.00	. 01100	. 795	3.398	1.958	$+.007$	+. 007	+. 007
20.35	. 1360	3.62	01033	. 866	3.440	1.986	$+.012$	$-.002$. 0
30.6	. 1020	4.05	01136	. 901	3.392	1.945	$+.012$	-. 009	$-.010$
40.4	. 0782	5.76	01638	1.107	3.239	1.786	$+.009$	-. 023	-. 020
50.4	. 0674	10.49	. 02945	1.172	2.979	1.531	$+.004$	-. 030	-. 030
60.2	. 06685	24.0	. 06625	1.176	2.62	1.199	. 0	-. .043	-. 042
70.0	. 0661	72.0	. 1993	1.180	2.14	$(0.700)^{d}$. 0	-.041	-. 05
80.5	. 0680	164.0	. 3014	1.168	1.78	$(0.521)^{d}$	$-.003$	-. 027	
90.5	. 0965			1.016			$-.040$		
96.7	. 1785			0.748			-. 040		

${ }^{\text {a }}$ The activity of the solid at 25° was defined as unity so that the mean activity coeffcient ($f \pm$) was the reciprocal of the concentration of the saturated solution. ${ }^{b}$ If it is assumed that $f_{\mathrm{K}^{+}}=f_{\mathrm{chO}^{4}}$, the values under I are also those for K^{+}and ClO_{4}^{-}, the values under II are those for the tetraphenylphosphonium ion and the values under III are those for the tetrabutylammonium ion. ${ }^{\text {c } I}$ is potassium perchlorate; II is tetraphenylphosphonium perchlorate; III is tetrabutylammonium perchlorate. ${ }^{d}$ These valucs are inaccurate because the phase in equilibrium with the saturated solution was a liquid rich in III and not solid III. Salid III was regenerated from this liquid phase on dilution with water.
tion in pentane divided by the concentration of acrylonitrile in the aqueous sulfuric acid layer.
Table I summarizes the data on the solubilities of the three salts studied. 'A method for estimating d $\log f / \mathrm{d}$ \% $\mathrm{H}_{2} \mathrm{SO}_{4}$ for several single ions is given in footnote (b) in Table I. Table II lists values of $\mathrm{d} \log \left(f_{1} / f_{2}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ for three pairs of cations as well as values for the single ion $\mathrm{ROH}_{2}{ }^{+}$. Table III sinmmarizes the data on the solubilities of neutral species. Table IV summarizes the distribution data on acrylonitrile. Table V lists values of $\mathrm{d} \log \mathrm{f} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ for the nentral species studied as well as some computed from the solubility data of Hammett and Chapnan. ${ }^{6}$

		Table		
Values	I Log	/1 70	For Pal	Cations
	$f_{\mathrm{K}}{ }^{+}$	$\mathrm{d} \log _{f \mathrm{~K}}\left(f_{1} /\right.$		
$\% \mathrm{H}_{2} \mathrm{SO}_{4}$	$\frac{\left(h^{5}\right.}{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}^{+}}$	$\frac{\mathrm{f}}{\left.\mathrm{f} 4 \mathrm{c}_{4} \mathrm{H}\right)_{4} \mathrm{~N}}$		$\frac{\mathrm{fROH}_{2}-0}{f \mathrm{~K}^{+}}$
0.0	0.004	0.004	0.000	
5.06	. 010	. 010	. 000	0.055
12.40	. 000	. 000	. 000	. 042
20.35	. 028	. 024	. .004	. 050
30.6	. 042	044	- -.002	. 067
40.4	. 064	0.58	--.006	. 065
50.4	. 068	. 008	000	. 068
60.2	. 0.86	. 084	-. .002	. 095
70.0	. 082	. 10	++. 02	. 063
80.5	. 048			(0)

"The only assmmption required to compute thesc valnes was that the activity coeflicients of the ions were independent variables. ${ }^{b}$ Ref. 3

Discussion

Activity Coefficients of Molecules.-For the neutral molecules, the data in Table V demonstrate that $\mathrm{d} \log f / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was remarkably independent of structure from $0-60 \%$ sulfuric acid. This result was obtained despite considerable variation in size and functional groups of the neutral molecules. Also the values of this function were small, generally varying between +0.02 and -0.02 . This is in agreement with the small Sctschenow parameters ${ }^{7}$ that have been found for aqueous solutions of strong acids. From $60-90 \%$ sulfuric acid, $\mathrm{d} \log \mathrm{f} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ for benzene and chlorobenzene remain in the range 0 to -0.03 and
(6) 1.. P. Hmnmett and 1 k . Chapman, Tuis Jonrnan, 66, 1282 1934).
(7) F. A. Long anil W. 1'. MeDevit, Chem. Kievs., 51, 119 (1952).

			TAl31 E	IlI			
Solub	IES 0	ORGA	$\begin{aligned} & \text { IC } \mathrm{COM} \\ & \mathrm{H}_{2} \mathrm{~S} \end{aligned}$	potinds	ASADC	SCTION	$\text { or } \%$
				ubility ${ }^{\text {a }}$	$\mathrm{C}_{6} \mathrm{H}_{5}$		$\left(\mathrm{C}_{6}\right.$
$\stackrel{\%}{\mathrm{H}_{2} \mathrm{SO}_{4}}$	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{6} \\ 264 \end{gathered}$	$\begin{gathered} \left(\mathrm{C}_{i} \mathrm{H}_{6}\right)_{2-}- \\ \mathrm{CH}_{2} \\ 220 \end{gathered}$	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \end{gathered}$	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{6}- \\ & 6 \mathrm{CH} \mathrm{H}_{3} \\ & 286 \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{CH}_{2}- \\ 276 \\ 276 \end{gathered}$	$\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ CHOH (c)	$\mathrm{H}_{6} \mathrm{COH}_{3-}$ CO (c)
0.0	0.775	() 990	0.790	0.415	0.498	2.80	5.5
5.06	. 646	. 720	. 691	. 345	. 407	2.12	5.0
12.40	. 532	. 520	549	245	. 362	1.57	4.5
20.35	. 432	. 395	428	189	. 358	1.12	4.8
30.6	. 363	. 326	. 384	. 176		0.87	5.0
40.4	. 334	. 357	. 393	. 168		0.90	7.0
50.5	. 332	. 405	. 400	. 198		1.24	
60.2	. 334	. 495	. 400				
70.0	. 352	. 590	. 490				
80.5	. 410		.665				
90.5			$1.2{ }^{\text {h }}$				

${ }^{a}$ The values listed in cach colunn1 except the last two are the optical densities of the saturated solutions at the wave length ($\mathrm{m} \mu$) indicated under the formula of each compoind. The wave length used was an absorption maximum with all but diphenylmethane and methoxybenzene. The concentration in moles/liter could be determined by measuring the extinction coefficient at the appropriate wave length and dividing it into the optical density listed in the table. ${ }^{b}$ A value of 0.910 was obtained at $85 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. cThe values in these two columns are the actual molarity of the alcohol multiplied by 10^{3} for diphenylmethanol and by 10^{6} for triphenylmethanol. The saturated solutions were diluted with 97% sulfuric acid and the concentrations of the resulting carbonium ions were measured spectroscopically. For diphenylmethanol, the data were measured at $442 \mathrm{n} \mu$ and an extinction coefficient of $10^{4.64}$ was used in the calculations. The corresponding values for triphenylmethanol were $431 \mathrm{~m} \mu$ and $10^{4.69}$.
this result probably prevails for other non-polar solutes.
The substituted carboxylic acids studied by Han1mett and Chapman ${ }^{6}$ present an unusual situation in $60-90 \%$ sulfiric acids. Values of $\mathrm{d} \log \mathrm{f} / \mathrm{d}$ $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ range from1 -0.03 to -0.14 (Table V). This unusual result was discussed by H . and C ., who presented spectroscopic and cryoscopic eviHence to show that the sharp increases in solubilities were not due to protonation of the carboxyl group.

Table IV
Values for the Activity Coefficients of Acrylonitrile from Distribution Experiments

${ }_{\mathrm{H}}^{\mathrm{H}} \mathrm{SO}_{4}$					Activitycoefficient	
	$\begin{gathered} \text { Pentane } \\ \text { layer } \end{gathered}$	Aqueous layer	Pentane layer	Aqueous layer		ds liyer
0.0	0.122	0.049	0.224	0.108	0.40	0.48
5.06	. 118	. 053	218	. 114	. 44	52
12.40	. 114	. 056	208	. 125	. 49	. 60
21.5	. 109	. 062	. 197	. 135	. 57	. 68
27.6	. 104	. 067	. 193	. 139	. 64	72
38.7	. 110	. 061	. 200	. 146	. 55	. 66
$5 \overline{5} .5$. 127	. 044	. 240	. 092	. 34	. 38
60.3	. 130	. 041	. 256	. 077	. 31	. 30

${ }^{\text {a }}$ The concentration in the pentane layer was determined spectroscopically using data at $225 \mathrm{~m} \mu$. The extinction coefficient for acrylonitrile at $225 \mathrm{~m} \mu$ was 1.58. The concentration in the aqueous layer was determined by the difference between the initial and equilibrium concentrations of the acrylonitrile in pentane. b The initial concentration of acrylonitrile in series II was about twice that in series I. This had an appreciable effect on the activity coefficients as shown in the last two columns. The data in column I are an average of 2 or 3 runs in which the maximum deviation from the average was 5%. The data in column II were more erratic. The maximum deviation from an average of three runs ranged from $5-12 \%$. The values of $\mathrm{d} \log f_{\text {RCN }} / \mathrm{d} \%$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ which appear in Table V are based on the data in column I. ©The activity coefficients were the concentrations in the aqueous layers divided by the concentrations in the pentane layers.

The qualitative solubility data support such a hypothesis.

In summary, the nitro compounds and carboxylic acids, which contain two oxygen atoms in 1,3relation, have appreciable values of $\mathrm{d} \log \mathrm{f} / \mathrm{d}$ $\leqq \mathrm{H}_{2} \mathrm{SO}_{4}$ from $60-100 \%$ sulfuric acid and it is advisable to estimate the value of the last term in either eq. 4 or 5 when such species are involved.

Activity Coefficients of Ions.-The ionic activity coefficients in eq. 4 and 5 appear as the ratio of the activity coefficients of two cations. Although it is generally not possible to evaluate activity coefficients of single ions without rather tenuous assumptions, the ratio of the activity coefficients of two cations can be determined with no assumption other than that the activity coefficients of cation and anion are independent variables. The values of four such ratios appear in Table II for a range of concentrations of sulfuric acid.

It was anticipated that these cation activity coefficient ratios would have a limited set of values for certain characteristic types of cation structures. Support for this concept is already apparent in

Table V
$\% \mathrm{H}_{2} \mathrm{SO}_{4}=$
Benzene
Diphenylmetbane
Chlorobenzene
Methoxybenzene
2-Phenylethanol
Diphenylmethanol Triphenylmethanol Acrylonitrile
2-Methyl-2-butene ${ }^{\text {a }}$
Nitrobenzene ${ }^{b}$
Benzoic acid ${ }^{b}$
Phenylacetic acid ${ }^{b}$
2-Nitrobenzoic acid ${ }^{\text {b }}$
4-Nitrobenzoic acid ${ }^{\text {b }}$
${ }^{\text {a }}$ Computed from the data of R. W. Taft, Jr., E. Purlee and P. Riesz, which were measured at 30° (This Journal, 77, 899 (1955)). ${ }^{b}$ Computed from the data of Hannmett and Clapman (ref. 6).

A similar situation exists for nitrobenzene. The data of Hammett and Chapman ${ }^{6}$ do not extend beyond 80% sulfuric acid. However, semi-quantitative experiments showed that nitrobenzene exhibits a very sharp increase in solubility from $80-$ 97% acid. The solubilities expressed in $\%$ nitrobenzene were $<1 \%$ in 85% acid, 29% in 90.5% acid, 50% in 93.8% acid and 89% in 96.7% acid. Thus nitrobenzene and 96.7% acid were miscible from $0-89 \%$ nitrobenzene. These large solubilities cannot be due to protonation since spectroscopic and cryoscopic data showed that nitrobenzene is less than 1% protonated in 97% acid. ${ }^{8}$ It is entirely possible that these sharp changes in solubilities are due to as yet unknown equilibria. For example nitrobenzene might form a stable $\mathrm{C}_{6} \mathrm{H}_{5}$ $\mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$ species represented by structure I .

[^1]Table II as evidenced by identical values for $\mathrm{d} \log$ $\left(\mathrm{fK}^{+} / f_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) 4 \mathrm{P}^{+}}\right) / \mathrm{d} \quad \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{d} \log \left(f_{\mathrm{K}}^{+} / f_{-}\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H} 9\right) \mathrm{N}^{+}\right)$at all acid concentrations studied. Bartlett and Arnett ${ }^{9}$ suggested that the categories may depend on the effective electrical field that acts on the solvent. Thus ions in which the charges are well shielded from the solvent such as the tetraphenylphosphonium ion and tetrabutylammonium ion will fall into a single category. Small unshielded ions and perhaps ions containing an unshielded charge on the periphery of an organic moiety would comprise two other categories.

As data become available it will be possible to estimate $\mathrm{d} \log \left(f_{\text {cation }} / f^{*}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ values in eq. 4 and 5 by choosing values for ions structurally similar to the cation and transition state under investigation.

Nature of the Transition State.-Equations 4 and 5 are not only useful in identifying the composition
(9) Contributed in discussions.
of the transition state, but in favorable cases they can yield information regarding the type of bonding in the transition state. The method can most easily be explained by reference to the particular case of the pinacol rearrangement.

Two extreme structures can be envisioned for the transition state. In I, the rearrangement is a concerted process in which there is very little lengthening of the $\mathrm{C}-\mathrm{O}$ bond in the transition state. In III, the carbonium ion forms in a rapid reversible equilibriun1 followed by a rate-determining rearrangement of the carbonium ion. With I, the kinetics would fit eq. 4 and the last term, which would contain ($f_{\text {sly } \mathrm{cof}} f_{\mathrm{BH}}{ }^{+} / f_{\mathrm{B}} f^{*}$), would be negligible. The values of $\mathrm{d} \log \mathrm{f} / \mathrm{d} / \mathrm{CH}_{2} \mathrm{SO}_{4}$ for glycol and B would cancel (in $0-60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$) and the transition state is so like a protonated base that its term would cancel that of BH^{+}.

I

II

IIl

By an analogous argument, with III the kinetics would fit eq. 5 with a negligible last term.

In the case of II, eq. 4 would be applicable but the last term would become important. As the transition state became more and more like a carbonium ion, $\mathrm{d} \log \left(\int_{\mathrm{BH}}{ }^{+} / f^{*}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ would become appreciable and approach the value of $d \log$ $\left(f_{\mathrm{ROH}_{2}}{ }^{+} / \mathrm{fR}^{+}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ at extreme stretching of the $\mathrm{C}-\mathrm{O}$ bond. In $0-50 \%$ sulfuric acid where d $\log a_{\mathrm{H}_{2} \mathrm{o}} / \mathrm{d} \%_{0} \mathrm{H}_{2} \mathrm{SO}_{4}$ is small, $\mathrm{d} \log \left(f_{\mathrm{ROH}_{2}+}+/ f_{\mathrm{R}}{ }^{+}\right) / \mathrm{d}$ ${ }_{0} \mathrm{H}_{2} \mathrm{SO}_{4}$ is just the difference between $-\mathrm{d} C_{0} / \mathrm{d}$ $\%_{0} \mathrm{H}_{2} \mathrm{SO}_{4}$ and $-\mathrm{d} H_{0} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The result is that as the transition state varies from I through II to III in a series of glycols, d $\log k / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ can be expected to change continuously from values equal to $-\mathrm{dH}_{0} / \mathrm{d} / \mathrm{H}_{2} \mathrm{SO}_{4}$ to values equal to $-\mathrm{dC} C_{0} / \mathrm{d}$ $\% \mathrm{H}_{2} \mathrm{SO}_{4}$.

Hammett-Zucker Hypothesis. ${ }^{2,10}$-For reactions in which the transition state has the composition $\left(\mathrm{A} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{H}^{+}\right)$, eq. 7 can be derived from the Brönsted rate equation. Hammett and Zucker ${ }^{10}$
$\mathrm{d} \log k / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{d} \log c_{\mathrm{H} 3}+/ \mathrm{d} \%_{6} \mathrm{H}_{2} \mathrm{SO}_{4}+$ $\mathrm{d} \log \left(f_{\mathrm{A}} f_{\mathrm{H}_{3} O^{+} / f} / \mathrm{f}^{*}\right) / \mathrm{d} \% \mathrm{H}_{3} \mathrm{SO}_{4} \quad(7)$
(10) 1. Zacker and L. P. Hammett. This Journal, 61, 2791 (193:9)
found that the last term in eq. 7 appared to be negligible for several reactions believed to be of this type. This result has been widely used ${ }^{11}$ as a means of determining the composition of the transition state and in particular to decide whether water was or was not present.

It is our interpretation that the values of the last term in eq. 7 are more a function of the structural type of the ionic transition state than of its composition. Thus it is somewhat coincidental that most transition states containing a water molecule have the charge of the ion unshielded from solvent so that d $\log f / \mathrm{d}^{6} / \mathrm{H}_{2} \mathrm{SO}_{4}$ for $\mathrm{H}_{3} \mathrm{O}^{-}$and the transition state approximately cancel (f_{A} usually makes a minor contribution). However, cases can be envisioned in which the charge is well embedded in the transition state and the last term in eq. 7 will become important despite the presence of water in the transition state. In such cases the value of $\mathrm{d} \log$ $\left(f_{\left.\mathrm{H}_{5} \mathrm{O}^{+} / f^{*}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4} \text { will approach d } \log \left(f_{\mathrm{K}}+/{ }^{+}\right) .}\right.$ $\left.f\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{P}^{+}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and thus the value of d 1 og $k / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ can approximate that of $-\mathrm{d} \mathrm{H}_{0} / \mathrm{d}$ ${ }_{7} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Acidity Functions.-For the bases used to evaluate H_{0}, calculations based on the data of Hammett and co-workers ${ }^{12}$ showed that d \log $\left(f_{\mathrm{BH}}{ }^{+} / f_{\mathrm{B}}\right) / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ did not vary generally by more than 0.01 unit at any particular concentration of sulfuric acid. The data in Table V show that $\mathrm{d} \log \mathrm{f} / \mathrm{d} \% \mathrm{~F}_{\mathrm{O}}^{2} \mathrm{SO}_{4}$ for neutral species does not generally vary more than 0.02 unit from $0-(50 \%$ acid. We can thus conclude that $\mathrm{d} \log \mathrm{f}_{\mathrm{BH}}{ }^{+} / \mathrm{d}$ $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ also does not generally vary with structure by more than 0.02 unit in this region. This conclusion applies only to the BH^{+}structures used to evaluate H_{0}. Thus in the $0-60 \%$ acid region the success of the H_{0} and C_{0} acidity functions is at least in part due to the invariance with structure of $\mathrm{d} \log \mathrm{f} / \mathrm{d} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ terms for B and $\mathrm{BH}^{+} \mathrm{in}$ dependently and for ROH and R^{+}in the case of C_{0}. It is an open question whether a more precise invariance arises from the ratio $f_{\mathrm{BH}}+/ f_{\mathrm{B}}$ than for $f_{\mathrm{BH}}{ }^{+}$and f_{B} separately.
University Park, Pa.

[^2]
[^0]: (4) Dr. R. P. Seward kindly supplied a sample of this salt.
 (5) H. Willard and L. Perkins, Anal. Chem., 25, 1634 (1953).

[^1]: (8) J. C. D. Brand, J. Chem. Soc., 997 (1950); L. P. Hammett, J. Chem. Phys., 8, 644 (1940); R. J. Gillespie and D. J. Millen, Quart. Revs., 2. 292 (1948).

[^2]: (11) F. A. Long, et al., ibid., 72, 2367, 3692 (1950): 78, 3320 (1950):
 J. Phys. Colloid Chem., 55. 829 (1951): R. W. Taft, Jr., Tris Journal., 74, 5372 (1952): R. P. Bell, A. L. Dowding and H. A. Noble, J. Chem. Soc. 3106 (1955).
 (12) L. P. Hammett and A. Deyrup. This Journal, 54, $27 \div 1$ (1932): L. P. Hammett and M. Panl, ibid, 56, 8:7 (1934).

